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Disclaimer

▪ About me
๏ Scientist at Fermilab 
• Searching for SuperSymmetry and Dark Matter and doing 

Standard Model Top Physics with CMS
๏ Assistant Head of the Scientific Computing Division at 

Fermilab

▪ Disclaimer
๏ Not a comprehensive review ➜ selection of concepts 

and developments I think will be important for the future
๏ My expertise is in computing for collider experiments, 

there will be some bias in this talk
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Audience

This talk is 
for you!
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The Scientific Process
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▪ Software & Computing is an integral part of the scientific process
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Software & Computing

▪ Software is important for every step on the way to scientific results
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Software & Computing

▪ Computing resources (Storage and Network, Processing, …) are needed for all steps
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Unfair!

▪ Simplified picture, I forgot major software & computing areas
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Accelerator 
Simulations

Lattice QCD

everything else I could not include …
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Software
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Frameworks

▪ Underlying infrastructure, core of the software

๏ Large experiments have their own Frameworks

๏ Trend: community frameworks serving several experiments or detector 
technologies

• Art: common framework for neutrino and muon experiments
• LArSoft: common framework for liquid argon TPC (LArTPC) reconstruction software
• Gaudi: common underlying framework for ATLAS and LHCb software
• ALFA: the new ALICE-FAIR software framework
• …
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Moore’s Law

▪ Traditionally, HEP software 
is optimized for a “simple” 
architecture

๏ x86 based Linux
๏ Machines:
• ≥1 CPUs with ≥1 Cores

๏ Shared memory
๏ Shared local disk space

๏ An application uses one core and 
memory and local disk space
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What we see: more and more 
cores, but less powerful 
individually.
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New technologies: more and more cores!

▪ x86-based machines: running into limitations
๏ Each application needs
• “A lot” of memory (~2GB for LHC experiments) and corresponding bandwidth from memory to a core
• The more cores in a single machine ➜ the more memory and bandwidth is needed

▪ New technology: GPGPU: General-purpose computing on graphics processing 
units
๏ Use of a graphics processing units (GPUs) optimized for parallel processing ➜ using many cores per 

application 
๏ To perform computation traditionally handled by the central processing unit (CPU)

▪ New technology: Co-Processor architectures
๏ Keyword: Intel MIC (Many Integrated Core) Architecture

▪ Consequence: We need to use more cores in parallel for our applications!
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Multi-threading: frameworks
▪ Advantage: save memory by sharing between threads
▪ current state: run each event in own thread

▪ future: run parts of events in different threads ➜ higher optimization 
results with even less memory usage
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Thread-safe programming
▪ New technologies: multi-threading, 

GPGPU, Co-Processors
๏ Require new programming skills!
๏ My opinion: comparable to Fortran ➜ C++ 

switch

▪ Multi-threaded programming needs 
to be done right
๏ Small amounts of non-thread-safe code 

reduces the efficiency significantly ➜ 
Amdahl’s law

▪ Go and learn thread-safe 
programming!
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Storage
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What is a Petabyte?
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LHC schedule
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LHC expectation data volumes

▪ Shown: RAW expectations
๏ Derived data (RECO, Simulation): factor 8 of RAW

▪ LHC Run 4 is starting the exabyte era
▪ How do we analyze that much data in the future?
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Strong networks: ESNet

18
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Universities
DOE laboratories

The Office of Science supports:
� 27,000 Ph.D.s, graduate students, undergraduates, engineers, and technicians
� 26,000 users of open-access facilities
� 300 leading academic institutions
� 17 DOE laboratories

SC Supports Research at More than 300 Institutions Across the U.S.
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Distributed infrastructures and transfer systems 
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CMS transfers: more than 2 PB per week

Community uses various solutions to provide distributed 
access to data:
Experiment specific: Atlas (Rucio), CMS (PhEDEx), …
Shared: SAM (Neutrino and Muon experiments)
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Dynamic Data Management
▪ Subscription based transfer systems

๏ PhEDEx (CMS) and Rucio (Atlas)
๏ LHC Run 1: mostly manual operations
๏ LHC Run 2: dynamic data management
• Popularity is tracked per dataset
• Replica count across sites is increased or decreased 

according to popularity

▪ Fully integrated distribution system
๏ SAM (shared amongst Neutrino and Muon experiments)
๏ All movement is based on requests for datasets from jobs.
๏ Interfaces to storage at sites, performs cache-to-cache 

copies if necessary

▪ Data is distributed automatically for the 
community
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Data Federations
▪ xrootd: remote access to files

▪ ALICE based on xrootd from the 
beginning

▪ CMS and Atlas deployed xrootd 
federations
๏ AAA for CMS, FAX for Atlas
๏ Allows for remote access to all files on 

disk at all sites
๏ Use cases: 
• Fall back
• Overflow for ~10% of all jobs
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OSG StashCache

▪ OSG: StashCache
๏ Bringing opportunistic 

storage usage to all users 
of OSG

๏ OSG collaborators provide 
local disk space

๏ OSG is running xrootd 
cache servers
• Dynamic population of 

caches ➜ efficient 
distributed access to files
- For users that don’t have 

infrastructures like CMS 
and Atlas
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Active Archival Facility
▪ HEP has the tools and experience for the distributed 

exabyte scale
๏ We are “best in class” in the field of scientific data management

▪We are working with and for the whole science community
๏ To bring our expertise to everyone’s science
๏ To enable everyone to manage, distribute and access their data, globally

▪ Example: Fermilab’s Active Archival Facility (AAF)
๏ Provide services to other science activities to preserve integrity and 

availability of important and irreplaceable scientific data
๏ Projects:
• Genomic research community is archiving datasets at Fermilab’s AAF and 

providing access through  Fermilab services to ~300 researchers all over 
the world
• University of Nebraska and University of Wisconsin are setting up archival 

efforts with Fermilab’s AAF
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Processing

24
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New resource providers

25

Grid Cloud HPC

Trust Federation Economic Model Grant Allocation

▪ Community Clouds - Similar trust 
federation to Grids

▪ Commercial Clouds - Pay-As-
You-Go model

๏ Strongly accounted
๏ Near-infinite capacity ➜ Elasticity
๏ Spot price market

▪ Researchers granted access to 
HPC installations

▪ Peer review committees award 
Allocations

๏ Awards model designed for individual PIs rather than 
large collaborations

▪ Virtual Organizations (VOs) of 
users trusted by Grid sites

▪ VOs get allocations ➜ Pledges
๏ Unused allocations: opportunistic resources
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Evolving the Grid

▪ Experiments don’t need all the resources all the time
๏ Conference schedule, holiday seasons, accelerator schedules, etc.
๏ Resource needs vary with time ➜ Provisioning needs to adapt

26

Traditional: 
Resource Provisioning for Average

Evolution: 
Resource Provisioning for Peak
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Fermilab’s HEPCloud
▪ Many experiments and facilities are exploring using commercial cloud providers to provision for 

peak
๏ Examples: Atlas, CMS, STAR, NOvA, etc. / BNL, FNAL, CNAF, etc.

▪ Example: Fermilab’s HEPCloud
๏ Provision commercial cloud resources in addition to physically owned resources
๏ Transparent to the user
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Open Science Grid ➜ Facilitating shared access

▪ Researcher use a  
single interface to  
use resources …
๏ ... they own
๏ ... others are willing to share
๏ ... they have an allocation on
๏ ... they buy from a commercial  

(cloud) provider

▪ OSG focuses on making this technically possible for  
Distributed High Throughput Computing
๏ Operate a shared Production Infrastructure ➜ Open Facility (glideinWMS)
๏ Advance a shared Software Infrastructure ➜ Open Software Stack
๏ Spread knowledge across Researchers, IT professionals & Software developers ➜ Open Ecosystem
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HPC & HEP
▪ HTC: High Throughput Computing

๏ Independent, sequential jobs that can be individually scheduled 
on many different computing resources across multiple 
administrative boundaries(*)

▪ HPC: High Performance Computing
๏ Tightly coupled parallel jobs, must execute within a particular site 

with low-latency interconnects(*)

▪ Long history in HEP in using HPC installations
๏ Lattice QCD and Accelerator Modeling exploit the low latency 

interconnects successfully for a long time

▪ Community effort: enable traditional HEP framework 
applications to run on HPC installations
๏ Example: Mira at Argonne (PowerPC, ~49k nodes each 16 cores, 

almost 800k cores)
๏ Generating Atlas LHC Events with Algren
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The Future: Exascale ➜ more cores!

▪ Department of Energy's (DOE) Advanced Scientific Computing Research (ASCR) 
program plans for Exascale Era ➜ “A lot more cores!”
▪ Opens up exciting possibilities for HEP: in the light of significantly increasing resource 

needs (for example for the High Luminosity LHC)
30

Projected Parallelism for Exascale
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New architectures

▪ HEP applications need a lot of memory and memory bandwidth
๏ Cannot have both in Exascale machines ➜ new architectures
๏ Requires to rethink how we design HEP applications!

31

C
or

e

C
or

e

DRAM

volatile local 
storage (disk/ssd)

Node

C
or

e

C
or

e

DRAM

volatile local 
storage (disk/ssd)

Node

volatile global storage (disk/ssd)

permanent global 
storage (tape)

C

F

C

F

C

F

C

F

D

NV

Node
C

F

C

F

C

F

C

F

D

NV

Node

C

F

C

F

C

F

C

F

D

NV

Node

volatile global storage (disk/ssd)

permanent global 
storage (tape)

Fast 

a) current b) exemplary exascale architecture

C: Core 
F: Fast RAM 
D: DRAM 
NV: NVRAM



Oliver Gutsche I DPF2015 - Exascale and Exabytes: Future directions in HEP Software and Computing 6. August 2015

Summary & Outlook
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Take-home messages

▪ Software and Computing are integral parts of the HEP science 
process
๏ Know the tools and their capabilities ➜ Get physics results efficiently and reliably

▪ Learn multi-threaded programming!!!

▪ Having to handle Exabytes of data is not that far off
๏ Many new tools help you, both if you are working for a LHC collaboration, the Neutrino 

and Muon Experiment Community or any other HEP or non-HEP experiments

▪ Science will look different in the Exascale era
๏ Commercial clouds and Exascale HPC machines will change the way when and how 

we do computing
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And now:

BANANA!

No, lunch


